

Date Planned : / /	Daily Tutorial Sheet-11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type	Exact Duration :

126. A sample of air consisting of N_2 and O_2 was heated to 2500 K until the equilibrium $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$

As established with an equilibrium constant $K_C = 2.1 \times 10^{-3}$. At equilibrium, the mole % of NO was 1.8. Estimate the initial O_2 in air.

- 127. At 450°C, the equilibrium constant K_p for the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3$, was found to be $1.6 \times 10^{-5} \, \text{atm}^{-2}$ at a pressure of 200 atm. If N_2 and H_2 are taken in 1:3 mol ratio, what is the % of NH_3 formed at this temperature?
- 128. In the dissociation of HI, 20% of HI dissociated at equilibrium. Calculate $\,K_{\rm p}\,$ for.

$$HI(g) \Longrightarrow \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$$

- 129. An equilibrium mixture at 300 K contains N_2O_4 and NO_2 at 0.28 and 1.1 atmosphere respectively. If the volume of container is doubled, calculate the new equilibrium pressure of NO_2 .
- 130. The degree of dissociation is 0.4 at 400 K and 1 atm for the gaseous reaction :

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

Assuming ideal behavior of gases, calculate the density of equilibrium mixture at 400 K and 1 atm.

- **131.** For the reaction at $A(g) \rightleftharpoons B(g) + E(g)$; $\Delta H^{\circ} = -30 \text{ kJ mol}^{-1}$, the decrease in standard entropy is $0.1 \text{ kJ K}^{-1} \text{ mol}^{-1}$. The equilibrium constant K for the reaction is ______.
- **132.** For the reaction:

$$2A(g) + nB(g) \Longrightarrow 3C(g)$$

If K_p and K_c are 0.0105 and 0.45 at 250°C. The value of n is _____.

- 133. For the reaction $AB_2(g) \rightleftharpoons AB(g) + B(g)$, the initial pressure of $AB_2(g)$ was 6 atm and at equilibrium, total pressure was found to be 8 atm at 300 K. The equilibrium constant of the reaction at 300 K is......
- **134.** Two solids A and B shows the following equilibria in a vessel:

$$A(s) \rightleftharpoons X(g) + 2Y(g); \quad K_{P_1} = 9 \times 10^{-3}$$

$$B(s) \rightleftharpoons Z + 2Y(g);$$
 $K_{P_0} = 4.5 \times 10^{-3}$

What will be the total pressure over a mixture of A and B in atm

135. How many mole of glycerine should be added to 1 litre of 1 M H_3BO_3 so that 80% of boric acid form boric acid-glycerine complex?

$$H_3BO_3 + Glycerine \Longrightarrow Complex \qquad K_C = 0.90$$

136. For the reaction, $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$ at 720 K, the value of equilibrium constant is 50, when equilibrium concentration of both H_2 and I_2 is 0.5 M, K_p under the same conditions will be:

- 137. The reaction $A+2B \Longrightarrow 2C+D$ was studied using an initial concentration of B which was 1.5 times that of A. But the equilibrium concentrations of A and C were found to be equal. Then the K_c for the equilibrium is:
- 138. The partial pressure of $CH_3OH(g)$, CO(g) and $H_2(g)$ in equilibrium mixture for the reaction, $CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g)$ are 2.0,1.0 and 0.1 atm respectively at $427^{\circ}C$. The value of K_p for the decomposition of CH_3OH to CO and H_2 is :
- 139. A definite mass of solid NH_4HS is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure. NH_4HS decomposes to give NH_3 and H_2S and at equilibrium total pressure in flask is 0.84 atm. The equilibrium constant for the reaction is:
- **140.** For the reversible reaction $PtCl_4^{2-} + H_2O \rightleftharpoons [Pt(H_2O)Cl_3] + Cl^-;$

The rate of change of $PtCl_4^{2-}$ was found to change according to the equation

$$\frac{\Delta[\text{PtCl}_4^{2-}]}{\Delta t} = 3.9 \times 10^{-5} [\text{PtCl}_4^{2-}] - 2.1 \times 10^{-3} [\text{Pt}(\text{H}_2\text{O})\text{Cl}_3] [\text{Cl}^-]$$

Calculate the equilibrium constant for the backward reaction.